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Abstract
We provide a method and results for the calculation of the holonomy of a Yang–
Mills connection in an arbitrary triangular path, in an expansion (developed
here to fifth order) in powers of the corresponding segments. The results might
have applications in generalizing to Yang–Mills fields previous calculations of
the corrections to particle dynamics induced by loop quantum gravity, as well
as in the field of random lattices.

PACS numbers: 04.60.Pp, 11.55.Fv, 12.38.Gc

1. Introduction

Constraints in Lorentz covariance violations have been experimentally studied for a long time
[1] by obtaining observational bounds upon the violating parameters. Recent experiments
have shown an impressive increase in their sensitivities, thus producing even more stringent
bounds [2].

In order to correlate such experimental results, Kostelecky and collaborators have
proposed a phenomenological extension of the standard model, which incorporates the most
general Lorentz-violating interactions compatible with power counting renormalizability
together with the particle structure of the standard model [3]. An impressive number of
applications to very different processes have already been considered, as can be seen in [4],
for example.

Different models accounting for minute Lorentz violations have recently arisen in the
context of quantum gravity induced corrections to the propagation and interactions of particles
[5–9]. This amounts to realizing the generic violating parameters appearing in the standard
model extension in terms of specific quantities involving the Planck length �P together
with additional physically relevant objects. Moreover, the high precision obtained in the
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determination of the experimental bounds has brought quantum gravity induced effects to the
level of observable phenomena [10–13].

On the other hand, in the early 1980s, the growing importance of computer simulations of
gauge theories required a short distance cutoff of geometrical origin such as a lattice. However,
regular lattices break essential symmetries of continuum theories such as translational and
rotational invariance. Motivated by the need to maintain these symmetries, the field theory on
a random lattice was suggested [14]. Later on, the connection of random lattices with quantum
gravity and strings was studied and low-dimensional systems on random lattices were solved
using matrix model techniques [15].

In this work we concentrate on some aspects arising in the process of generalizing the loop
quantum gravity inspired model described in [6, 7] to Yang–Mills fields, in order to obtain the
non-Abelian generalization of the corrections previously found for the dynamics of photons.
Namely, corrections to standard matter dynamics are obtained by means of calculating non-
Abelian holonomies, either of gravitational or Yang–Mills-type, around triangular paths. To
this end we have to revise and extend the procedure of [16] that was applied to the case of
rectangular cells. It turns out that the method we present in this paper contains as a particular
case the result of [16], though it is applicable to arbitrary cells made up of triangles. The
basic building block in our analysis is the holonomy along a straight line segment, whose
characteristic property of being path-ordered is consistently maintained in all orders in our
expansion.

The problem we deal with here is closely related to the non-Abelian Stokes theorem which
has been repeatedly discussed in the literature [16, 17].

This paper is organized as follows: in section 2 we state the problem to be dealt with
and introduce some notation. Section 3 summarizes the results for the Abelian case which
we intend to generalize here. The non-Abelian case is subsequently discussed in section 4
which contains our main results. Using the procedure of [16] the corresponding calculation
is performed in section 5, which allows us to show some discrepancies that arise between the
two methods. Finally we close with a summary and discussion in section 6.

The computations involved in deriving h(5)
αIJ

were done using FORM [18].

2. Statement of the problem

The proposed method to obtain the quantum gravity induced corrections to the Yang–Mills
Lagrangian requires the calculation of the object

Tρ = tr(GρhαIJ
) (1)

where Gρ are the generators of the corresponding Lie algebra and hαIJ
is the holonomy of the

Yang–Mills connection Aa = A
ρ
a Gρ in the triangle αIJ , with vertex v, defined by the vectors

�sI and �sJ , arising from the vertex v in the way described below.
Our main task will be to construct an expansion of Tρ in powers of the segments sa

I

and sb
J .

To be more precise, we have

hαIJ
= P exp

(∮
αIJ

Aa(�x(s))
dxa

ds
ds

)
(2)

where P is a path-ordered product to be specified later. As shown in figure 1, the closed
path αIJ , parametrized by �x(s), is defined in the following way: we start from the vertex v

following a straight line with the direction and length of �sI , then follow another straight line in
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sI

sJ

v

Figure 1. Triangle αIJ with vertex v.

the direction and length of �sJ − �sI , and finally return to v following −�sJ . From the definition
of the holonomy, we have the transformation property

hαIJ
→ U(v)hαIJ

U(v)−1 (3)

under a gauge transformation of the connection, where U(v) is a group element evaluated at
the vertex v. In other words, hαIJ

transforms covariantly under the group.

3. The Abelian case

The corresponding calculation was performed in [6] and here we summarize the results in
order to have the correct expressions to which the non-Abelian result must reduce when taking
the commuting limit. In this case equation (1) reduces to

T = exp(�IJ ) − 1 (4)

where �IJ is the magnetic flux through the area of the triangle, given by

�B(FIJ ) =
∮

αIJ

dt ṡa(t)Aa(t)

=
∫ �v+�sI

�v
Aa dxa +

∫ �v+�sJ

�v+�sI

Aa dxa +
∫ �v

�v+�sJ

Aa dxa (5)

where the connection Aa(�x(s)) is now a commuting object.
The basic building block in (5) is∫ �v2

�v1

Aa(�x) dxa =
∫ 1

0
Aa(�v1 + t (�v2 − �v1))(�v2 − �v1)

a dt

=
∫ 1

0
Aa(�v1 + t ��)�a dt

=
(

1 +
1

2!
�b∂b +

1

3!
(�b∂b)

2 + · · ·
)

�aAa(v) (6)

with �a = (�v2 − �v1)
a . The infinite series in parenthesis is

F(x) = 1 +
1

2!
x +

1

3!
x2 +

1

4!
x3 + · · · = ex − 1

x
(7)

yielding ∫ �v2

�v1

Aa(�x) dxa = F(�a∂a)(�
aAa(�v1)). (8)
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In the following we employ the notation �aVa = �� · �v. Using the above result in the three
integrals appearing in (5) and after some algebra, we obtain

�B(FIJ ) = F1(�sI · ∇, �sJ · ∇)sa
J sb

I (∂aAb(�v) − ∂bAa(�v))

= F1(�sI · ∇, �sJ · ∇)sa
J sb

I εabcB
c(v) (9)

where the gradient acts upon the coordinates of �v. The function F1 is

F1(x, y) = y(ex − 1) − x(ey − 1)

xy(y − x)
= −

∞∑
n=1

1

(n + 1)!

xn − yn

x − y
. (10)

Let us emphasize that F1(x, y) is just a power series in the variables x and y. Expanding in
powers of the segments sa

I we obtain

�B(FIJ ) = (
1 + 1

3

(
sc
I + sc

J

)
∂c + 1

12

(
sc
I s

d
I + sc

I s
d
J + sc

J sd
J

)
∂c∂d + · · ·) 1

2 sa
I sb

J εabcB
c(v). (11)

Note that the combination
1
2 sa

I sb
J εabc = Anc (12)

is just the oriented area of the triangle with vertex v and sides sc
I , s

c
J , joining at this vertex,

having value A and unit normal vector nc.
To conclude we have to calculate

(exp(�B(FIJ )) − 1) =
∞∑

n=2

1

n!
(�B(FIJ ))n =

∞∑
n=2

MnIJ (13)

where the subindex n labels the corresponding power in the vectors sa . The results are

M2IJ := sa
I sb

J

1

2!
Fab (14)

M3IJ := sa
I sb

J

1

3!
(xI + xJ )Fab (15)

M4IJ := sa
I sb

J

1

4!

(
x2

I + xIxJ + x2
J

)
Fab + sa

I sb
J sc

I s
d
J

1
8FabFcd (16)

M5IJ := 1

5!

(
x3

I + x3
J + x2

I xJ + xIx
2
J

)
sa
I sb

J Fab +
sa
I sb

J sc
I s

d
J

4!
[(xI + xJ )FabFcd + Fab(xI + xJ )Fcd ]

(17)

up to fifth order. We are using the notation xI = �sI · ∇ = sa
I ∂a .

We expect that the non-Abelian generalization of the quantities (14)–(17) is produced by
the replacement

Aa → Aa = Aρ
aGρ ∂a → Da = ∂a − [Aa,] (18)

Fab → Fab = ∂aAb − ∂bAa − [Aa, Ab]. (19)

Nevertheless, at this level there are potential ordering ambiguities which will be resolved in
the following sections.

4. The non-Abelian case

In a way similar to the Abelian case we separate the calculation of the holonomy hαIJ
into

three basic pieces through the straight lines along the sides of the triangle αIJ . We have

hαIJ
= P(eL3)P (eL2)P (eL1) ≡ U3U2U1 (20)
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where

L1 =
∫ 1

0
dt Aa(�v + t �sI )s

a
I (21)

L2 =
∫ 1

0
dt Aa(�v + �sI + t (�sJ − �sI ))

(
sa
J − sa

I

)
(22)

L3 =
∫ 1

0
dt Aa(�v + �sJ − t �sJ )

(− sa
J

)
. (23)

Here we have parametrized each segment with 0 � t � 1.

4.1. The basic building block

Let us consider in detail the contribution

U1 = P(eL1) L1 =
∫ 1

0
dt Aa(�v + t�sI )s

a
I (24)

with �sI = {
sa
I

}
.

Using the definition

U1 = 1 +
∫ 1

0
dt Aa(�v + t�sI )s

a
I +

∫ 1

0
dt

∫ t

0
dt ′ Aa(�v + t�sI )Ab(�v + t ′�sI )s

a
I sb

I

+
∫ 1

0
dt

∫ t

0
dt ′

∫ t ′

0
dt ′′ AaAbAcs

a
I sb

I s
c
I + · · · (25)

for the path ordering, we arrive at the following expression:

U1 = 1 + I1(x)Aa(v)sa
I + I2(x, x̄)Aa(v)Āb(v)sa

I sb
I

+ I3(x, x̄, ¯̄x)Aa(v)Āb(v) ¯̄Ac(v)sa
I sb

I s
c
I + · · · . (26)

Here we are adopting the conventions

x = sc
I ∂c x̄ = sc

I ∂̄c ¯̄x = sc
I

¯̄∂c (27)

I1 = F(x) I2 = F(x + x̄) − F(x)

x̄
(28)

I3 = 1
¯̄x

[
1

x̄ + ¯̄x
(F (x + x̄ + ¯̄x) − F(x)) − 1

x̄
(F (x + x̄) − F(x))

]
(29)

with F(x) given by equation (7). The notation in equation (26) is that each operator x, x̄, ¯̄x
acts only in the corresponding field A, Ā, ¯̄A respectively. We write

U1 =
∑
N

U
(N)
1 (30)

where the superindex N indicates the powers of sa
I contained in each term. A detailed

calculation produces

U
(1)
1 = sa

I Aa U
(2)
1 = 1

2

(
xsa

I Aa + sa
I sb

I AaAb

)
(31)

U
(3)
1 = 1

3!

(
x2sa

I Aa + (x̄ + 2x)sa
I sb

I AaĀb + sa
I sb

I s
c
I AaAbAc

)
(32)

U
(4)
1 = 1

4!

[
x3sa

I Aa + (3x2 + 3xx̄ + x̄2)sa
I sb

I AaĀb + (3x + 2x̄ + ¯̄x)sa
I sb

I s
c
I AaĀb

¯̄Ac

+ sa
I sb

I s
c
I s

d
I AaAbAcAd

]
. (33)
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Specializing to the case �sI = (a, 0, 0) and to third order in a we obtain

U1 = 1 + aA1 + 1
2a2

(
∂1A1 + A2

1

)
+

1

3!
a3

(
∂2

1 A1 + A1∂1A1 + 2(∂1A1)A1 + A3
1

)
. (34)

Next we compare our result (34) with the calculation according to the method of [16]. Using
equation (3.15a) of this reference for L1 we obtain

eL1 = 1 + aA1 + 1
2a2

(
∂1A1 + A2

1

)
+

1

3!
a3

(
∂2

1 A1 + 3
2 (A1∂1A1 + (∂1A1)A1) + A3

1

)
(35)

which does not agree with the expression (34). This basic discrepancy propagates when
combining more segments and ultimately it is the source of the differences between our results
and those obtained via the application of the methods in [16].

It is interesting to remark that in the Abelian limit both (34) and (35) reduce to

U1 = 1 + aA1 + 1
2a2(∂1A1 + A2

1

)
+

1

3!
a3(∂2

1 A1 + 3A1∂1A1 + A3
1

)
(36)

which is obtained from a direct calculation using the expression (8).

4.2. The holonomy hαIJ

Now we put the remaining pieces together in order to calculate hαIJ
= U3U2U1. Using the

notation

y = sa
J ∂a (37)

and starting from the basic structure (26) we obtain, mutatis mutandis,

U
(1)
2 = (

sa
J − sa

I

)
Aa (38)

U
(2)
2 = 1

2

[
(x + y)

(
sa
J − sa

I

)
Aa +

(
sa
J − sa

I

)(
sb
J − sb

I

)
AaAb

]
(39)

U
(3)
2 = 1

3!

[
(x2 + y2 + xy)

(
sa
J − sa

I

)
Aa + (x + 2y + ȳ + 2x̄)

(
sa
J − sa

I

)(
sb
J − sb

I

)
AaĀb

+
(
sa
J − sa

I

)(
sb
J − sb

I

)(
sc
J − sc

I

)
AaAbAc)

]
(40)

U
(4)
2 = 1

4!

[
(x3 + y3 + x2y + xy2)

(
sa
J − sa

I

)
Aa + (xȳ + 3xx̄ + x2 + 2xy

+ 2x̄ȳ + 3x̄2 + 3y2 + ȳ2 + 3yȳ + 5x̄y)
(
sa
J − sa

I

)(
sb
J − sb

I

)
AaĀb

+ (x + 2x̄ + 3 ¯̄x + 2ȳ + ¯̄y + 3y)
(
sa
J − sa

I

)(
sb
J − sb

I

)(
sc
J − sc

I

)
AaĀb

¯̄Ac

+
(
sa
J − sa

I

)(
sb
J − sb

I

)(
sc
J − sc

I

)(
sd
J − sd

I

)
AaAbAcAd

]
(41)

for U2, together with

U
(1)
3 = −sa

J Aa (42)

U
(2)
3 = 1

2

(−ysa
J Aa + sa

J sb
J AaAb

)
(43)

U
(3)
3 = 1

3!

(−y2sa
J Aa + (2ȳ + y)sa

J sb
J AaĀb − sa

J sb
J sc

J AaAbAc

)
(44)

U
(4)
3 = 1

4!

[−y3sa
J Aa + (3ȳ2 + 3yȳ + y2)sa

J sb
J AaĀb − (3 ¯̄y + 2ȳ + y)sa

J sb
J sc

J AaĀb
¯̄Ac

+ sa
J sb

J sc
J sd

J AaAbAcAd

]
(45)



On non-Abelian holonomies 12103

for U3. Let us emphasize that in all the expressions above for U1, U2 and U3, the connection
is evaluated at the vertex v. The bars only serve to indicate the position at which the
corresponding derivative acts.

Next we write the contributions to the holonomy in powers of the segments. According
to equations (20) and (30) we obtain

h(2)
αIJ

= 1
2 sa

I sb
J Fab (46)

h(3)
αIJ

= 1

3!

(
sc
I + sc

J

)
sa
I sb

J DcFab (47)

h(4)
αIJ

= 1

4!

(
sc
I s

d
I + sc

I s
d
J + sc

J sd
J

)
sa
I sb

J DcDdFab + 1
8 sa

I sb
J sc

I s
d
J FabFcd (48)

h(5)
αIJ

= 1

5!

(
sc
I s

d
I se

I + sc
J sd

J se
J + 2

(
sc
J sd

I se
I + sc

I s
d
J se

J

) − sc
I s

d
J se

I − sc
J sd

I se
J

)
sa
I sb

J DcDdDeFab

+
1

4!
sa
I sb

J sd
I se

J

(
Fab

(
sc
I + sc

J

)
DcFde +

(
sc
I + sc

J

)
(DcFde)Fab). (49)

Equation (48) resolves the ordering ambiguity which apparently arose in covariantizing
the first term on the RHS of equation (16). Nevertheless, as we subsequently show, there is
really no such ambiguity at this order. Let us consider the combination

sa
I sb

J sc
I s

d
J (DcDd − DdDc) Fab = sa

I sb
J sc

I s
d
J [Dc, Dd ] Fab

= −sa
I sb

J sc
I s

d
J [Fcd , Fab] = [F, F] = 0 (50)

where we have used the notation F = sa
I sb

J Fab together with the property

[Dc, Dd ]G = −[Fcd , G] (51)

valid for any object G in the adjoint representation (Jacobi identity).
Results (46)–(48), which we have obtained by direct calculation, constitute in fact the

unique gauge covariant generalization of the corresponding Abelian expressions (14)–(16).
This provides a strong support to our method of calculation.

5. The holonomy according to the method of [16]

In this section we calculate the holonomy hαIJ
using the method of [16] adapted for our case of

three segments: L1, L2, L3. From equations (3.1), (3.3), (3.4), (3.12) and (3.14), with λ = 1,
of that reference it follows that

hαIJ
= exp(L3) exp(L2) exp(L1) = exp

(
	 +

∑
n=2

Fn

)
= exp(H). (52)

The basic building blocks are

L1 = sa
I F (x)Aa(v) L2 = (

sa
J − sa

I

)
F(y − x) exAa(v) L3 = −sa

J F (y)Aa(v) (53)

where the vertex v generalizes the point (x1, x2) in the notation of [16]. The calculational
method indicated in equations (52) and (53) is clearly not equivalent to the correct prescription
(20): hαIJ

= U3U2U1, with the U given by equation (26) together with the corresponding
extensions that take into account the change of the starting point in the corresponding path.

Let us write here those expressions arising from the method in [16] that we will use in
our calculation

	 = L1 + L2 + L3 (54)
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2!F2 = [(L3 + L2), L1] + [L3, L2] (55)

3!F3 = −[	,F2] + [(L3 + L2)
2L1] +

[
L2

3L2
]

(56)

4!F4 = −3![	,F3] − [	2F2] + [(L3 + L2)
3L1] +

[
L3

3L2
]

(57)

with the notation [A2B] = [A, [A,B]] and so on.
Expanding each segment in powers of the vectors sa , whose number is denoted by the

superindex, leads to (up to third order)

L
(1)
1 = sc

I Ac L
(2)
1 = 1

2!
sa
I sb

I ∂bAa (58)

L
(3)
1 = 1

3!
sc
I s

b
I s

a
I ∂b∂cAa (59)

L
(1)
2 = (

sa
J − sa

I

)
Aa L

(2)
2 = 1

2!

(
sb
I + sb

J

)(
sa
J − sa

I

)
∂bAa (60)

L
(3)
2 = 1

3!

[(
sb
J sc

J + sb
J sc

I + sb
I s

c
I

)(
sa
J − sa

I

)]
∂b∂cAa (61)

L
(1)
3 = −sc

J Ac L
(2)
3 = − 1

2!
sa
J sb

J ∂bAa (62)

L
(3)
3 = − 1

3!
sc
J sb

J sa
J ∂b∂cAa. (63)

Next we write the contributions to H in powers of the segments. Using equation (52), the
first-order contribution H(1) vanishes and the remaining contributions are

H(2) = 1
2 sa

I sb
J Fab (64)

H(3) = 1

3!

(
sc
I + sc

J

)
sa
I sb

J DcFab + 	(3) (65)

with

	(3) = 1
12

(−sb
I s

a
I sc

J + sb
I s

a
J sc

J + sb
J sa

I sc
J + sb

J sa
J sc

I − sb
J sa

I sc
I − sb

I s
a
J sc

I

)
[∂bAa, Ac]. (66)

The reader can verify that the term 	(3) is not covariant under the gauge group. This
would not be the case if one had used the path-ordering prescription (that is to say equation (20)
instead of equation (52)) in the construction of the holonomies. Indeed, gauge covariance
should hold to each order in the expansion in powers of the segments.

6. Summary and discussion

We have calculated the holonomy hαIJ
of the Yang–Mills connection Aa in the triangle αIJ with

vertex v and sides sa
I , sb

J joining at that vertex, as shown in figure 1. Our results, to fifth order
in the segments, are given in equations (46)–(49) of section 4. The direct calculation shows
that, to fourth order, the results are directly given by the replacement ∂a → Da, Fab → Fab in
the corresponding formulae for the Abelian case. This is so because, as explained at the end
of section 4, the potential order ambiguity in the fourth-order term is absent. From the fifth
order on such ordering ambiguities arise, so that it is not possible to guess the correct answer
from the Abelian case. Clearly then, one has to perform the full calculation in order to obtain
the correct result.

In section 5 the same calculation was performed using the method of [16]. The results
for the triangle coincide up to second order and start to differ from the third order on. This
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sI

sJ

sI

sJ

A

B

CD

a’’ a’ a

b

Figure 2. Quadrilateral ABCD with vertex v at the point A.

difference can be traced back to that arising in the calculation of the holonomy for a straight-
line segment according to equations (34) and (35), which the reader can easily verify. Contrary
to what is expected, the calculation according to the method in [16] produces non-covariant
contributions starting at third order.

The specific results presented in [16] correspond to the calculation of the holonomy
for a rectangle of sides a and b, respectively. Using the method described in section 4 we
have verified that, up to fourth order, the result given in equation (3.19) of that reference is
correct.

Nevertheless, since the calculational method of [16] does not properly take into account the
path ordering, it is not possible to guarantee the multiplicative composition law of holonomies.
In fact, one might think of obtaining the holonomy for the rectangle by composing the results
of properly chosen triangles. Even though, as commented above, one should not expect to
obtain the correct result, we have explored this possibility. To this end let us consider a
quadrilateral ABCD with vertex v at the point A, as shown in figure 2. The sides AB and CD
are parallel, but DA and BC are not. We are interested in calculating the holonomy for the path
ABCDA as indicated in figure 2. This can be done by composing, via matrix multiplication,
the holonomies corresponding to the triangles ABC (spanned by the vectors �sI , �sJ ) and ACD
(spanned by the vectors �̄sI , �̄sJ ), each of which is calculated according to expressions (65) and
(66), together with their corresponding 	. In other words,

hABCDA = hACDAhABCA. (67)

We introduce further notation in the plane of the quadrilateral
�AB = �sI = (a, 0) �AC = �sJ = (a′, b) (68)

�AC = �̄sI = (a′, b) �AD = �̄sJ = (a′′, b). (69)

We only pay attention to the non-covariant contributions. To third order they just add up and
we obtain

	
(3)
ABCA + 	

(3)
ACDA = (a′′ − a′ + a)

12
{3a′(a′′ − a)[∂1A1, A1]

+ b(a′′ + a′ − a)([∂1A1, A2] + [∂1A2, A1] + [∂2A1, A1])

+ b2[[∂2A1, A2] + [∂2A2, A1] + [∂1A2, A2]]}. (70)

We see that the above expression is not zero in general. Nevertheless, in the symmetrical case
of a parallelepiped, characterized by the condition

a′′ − a′ + a = 0 (71)
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the non-covariant piece (71) vanishes. Of course, the above condition includes that of a
rectangle which is a = a′ and a′′ = 0.

Moreover, to fourth order in the expansion, it is possible to show that following the
calculational method of [16], the composition law (67) yields gauge covariance violations
even for the case of the parallelepiped.
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